Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
1
2
1
1
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..(||
L1
@
L2
|| - 1)
}
7.
x
= (
L1
@
L2
)[
i
]
8.
y
= (
L1
@
L2
)[(
i
+1)]
9.
(
i
< ||
L1
||)
x
=
L2
[(
i
- ||
L1
||)]
latex
by ((RWO "select_append_back" (-3))
CollapseTHEN (((Auto')
CollapseTHEN (((All ArithSimp)
Co
CollapseTHEN (Auto
))
))
))
latex
C
.
Definitions
P
Q
,
P
Q
,
l
[
i
]
,
t
T
,
i
j
<
k
,
P
&
Q
,
x
:
A
B
(
x
)
,
Void
,
#$n
,
False
,
P
Q
,
a
<
b
,
n
-
m
,
-
n
,
n
+
m
,
A
,
{
x
:
A
|
B
(
x
)}
,
,
type
List
,
Type
,
{
i
..
j
}
,
||
as
||
,
as
@
bs
,
i
j
,
A
B
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
Lemmas
iff
wf
,
rev
implies
wf
,
select
append
back
,
le
wf
,
append
wf
,
non
neg
length
,
length
append
origin